Course Content
Python Programming Basics
-
Setup Environment
00:00 -
Variables in Python
00:00 -
Numbers in Python
00:00 -
String in Python
00:00 -
Lists in Python
00:00 -
if Condition
00:00 -
For Loop
00:00 -
Functions
00:00 -
Dictionary and Tuple
00:00 -
Module and Pip
00:00 -
File handling
00:00 -
Classes and Object
00:00 -
Inheritance
00:00 -
Exception Handling
00:00
DataFrame and Dataset
-
Getting Started with Datasets & CSV Files
00:00 -
Reading Data with pd.read_csv & Exploring DataFrames
00:00 -
Quick Insights: Using head(), tail(), and More
00:00 -
Understanding Data Types with .info()
00:00 -
Case Study: House Sales Dataset Walkthrough
00:00 -
Case Study: Titanic Passenger Dataset Walkthrough
00:00 -
Working Beyond Commas: Netflix Dataset with Other Separators
00:00 -
Customizing Headers: Country Population Dataset
00:00 -
Hands-On Challenge: DataFrames & Datasets
-
Step-by-Step Solution: DataFrames & Datasets
Essential DataFrame Methods & Computations
-
Finding Extremes: Min & Max Values
00:00 -
Totals & Counts: Summing Up Data
00:00 -
Central Tendencies: Mean, Median, & Mode
-
Quick Stats: Descriptive Analysis with Numeric Values
-
Analyzing Text Data: Describe With Objects
-
Hands-On Challenge: Essential DataFrame Methods
-
Step-by-Step Solution: Essential DataFrame Methods
Mastering Series & Columns in Python: From Selection to Visualization
-
Selecting a Single Column
-
Deep Dive: Understanding Series
-
Essential Series Methods
-
Discovering Uniqueness: unique() & unique()
-
Finding Extremes: nlargest() & nsmallest()
-
Working with Multiple Columns
-
The Powerful value_counts() Method
-
From Numbers to Insights: Visualizing with plot()
-
Hands-On Challenge: Series & Plotting
-
Step-by-Step Solution: Series & Plotting
Indexing & Sorting in Python: Organize, Access, and Unlock Your Data
-
Indexing Made Simple: Set_Index Basics
-
Case Study: World Happiness Index Dataset
-
Seamless Importing: Setting Index with read_csv
-
Sorting Essentials: Introduction to sort_values
-
Sorting by Multiple Columns
-
Sorting Text Columns
-
Organize by Index: Using sort_index
-
Sorting Meets Visualization
-
Accessing Data with loc
-
Accessing Data with iloc
-
Mix & Match: Using loc and iloc with Series
-
Hands-On Challenge: Indexing & Sorting
-
Step-by-Step Solution: Indexing & Sorting
Filtering DataFrames in Python
-
Boolean Magic: Filtering DataFrames with a Boolean Series
-
Powerful Comparisons: Filtering with Operators
-
Range Made Simple: The between() Method
-
Filtering by Lists: The isin() Method
-
Combining Conditions with AND (&)
-
Combining Conditions with OR (|)
-
Excluding Data: Bitwise Negation (~)
-
Handling Missing Data: isna() and notna()
-
From Filtering to Storytelling: Plotting Examples
-
Hands-On Challenge: Filtering DataFrames
-
Hands-On Challenge: Filtering DataFrames
Adding & Removing Columns in Python
-
Dropping Columns You Don’t Need
-
Removing Rows for Cleaner Data
-
Adding Static Columns
-
Generating Dynamic Columns
-
Real-World Example: Highest Price per Square Foot Homes
-
Real-World Example: Largest Bitcoin Price Changes
-
Hands-On Challenge: Adding & Removing Columns/Rows
-
Step-by-Step Solution: Adding & Removing Columns/Rows
Updating Values in Python: Clean, Correct, and Control Your Data
-
Renaming Columns and Index Labels
-
Fixing Data Fast with the replace() Method
-
Updating Values with loc[]
-
Making Bulk Changes: Updating Multiple Values with loc[]
-
Advanced Updates: Using loc[] with Boolean Masks
-
Hands-On Challenge: Updating Values
-
Step-by-Step Solution: Updating Values Exercise
Working with Data Types & Handling Missing Values in Python
-
Casting Data Types with astype()
-
Efficient Storage & Speed: Introducing the Category Type
-
Converting Numbers with pd.to_numeric()
-
Cleaning Up with dropna() and isna()
-
Filling the Gaps: Using fillna()
-
Hands-On Challenge: Dealing with NA Values
-
Step-by-Step Solution: Dealing with NA Values
Working with Dates & Times in Python: Unlock Time-Based Insights
-
Why Dates Matter in Data Analysis
-
Converting Strings into Dates with pd.to_datetime()
-
Handling Complex Formats: Advanced pd.to_datetime()
-
Integrating Dates into DataFrames
-
Unlocking Insights with .dt Properties
-
Comparing Dates with Ease
-
Real-World Project: Finding Starlink Flybys in UFO Reports
-
Date Math & TimeDeltas
-
Real-World Project: Billboard Charts Dataset Exploration
-
Hands-On Challenge: Dates & Times
-
Step-by-Step Solution: Dates & Times
Data Visualization with Matplotlib: Transform Numbers into Stories
-
Introduction to Matplotlib
-
Your First Matplotlib Plots
-
Do We Really Need plt.show()?
-
The Anatomy of Plots
-
Customizing Size: Figsize & Plot Dimensions
-
Styling Made Simple: Changing Matplotlib Stylesheets
-
Line Styles, Colors, Widths & More
-
Adding Context: Plot Labels & Titles
-
Fine-Tuning: Customizing X & Y Ticks
-
Highlighting Data: Adding Legends
-
Hands-On Challenge #1: Basic Plotting
-
Beyond Lines: Creating Bar Plots
-
Exploring Distributions: Creating Histograms
-
Hands-On Challenge #2: Bars & Histograms
-
Relationships at a Glance: Creating Scatter Plots
-
Breaking Down Proportions: Creating Pie Charts
-
Hands-On Challenge #3: Scatter & Pie Plots
-
Working with Subplots
-
Putting It All Together
-
Hands-On Challenge #4: Full Visualization Project
Revisiting Pandas Plotting
-
A Pandas Plotting Recap
-
Styling Your Visuals: Changing Pandas Plot Styles
-
Adding Clarity: Labels & Titles in Pandas Plots
-
Smarter Naming: Using rename() in Plots
-
A Deeper Dive: Pandas Bar Plots
-
Hands-On Challenge #1: Bar Plots in Action
-
Exploring Distributions: Pandas Histograms
-
Understanding Spread: Box Plots
-
Trend Tracking: Pandas Line Plots
-
Hands-On Challenge #2: Histograms & Line Plots
-
Spotting Relationships: Pandas Scatter Plots
-
Layering Insights: Multiple Plots on the Same Axes
-
Case Study: The UFO Sightings Plotting Challenge!
-
Hands-On Challenge #3: Scatter & Multi-Axes Plots
-
Quick Dashboards: Pandas Automatic Subplots
-
Full Control: Manual Subplots with Pandas
-
Hands-On Challenge #4: Subplots Mastery
-
Hands-On Challenge #5: Advanced Plotting Project
-
Sharing Your Work: Exporting Figures with savefig()
Grouping & Aggregating
-
Mastering the Basics: Introducing Groupby
-
Digging Deeper: Exploring Groups
-
The Secret Sauce: Split–Apply–Combine
-
Smarter Summaries: Using the agg() Method
-
Tailored Insights: agg() with Custom Functions
-
Clean & Clear: Named Aggregation
-
Hands-On Challenge: Groupby in Action
-
Guided Walkthrough: Groupby Exercise Solution
Hierarchical Indexing
-
Smarter Grouping: Groupby With Multiple Columns
-
Organizing Data: Creating a MultiIndex With set_index()
-
Bringing Order: Sorting A MultiIndex
-
Precision Access: Using .loc[] With A MultiIndex
-
Zooming In: Cross Sections With The xs() Method
-
Digging Into Levels: get_level_values()
-
Beyond Rows: Hierarchical Columns
-
Reshaping Data: stack() and unstack()
-
Visualization Boost: Plotting With unstack()
-
Index-Based Insights: Grouping By Index
Working with Text
-
Understanding the Basics: String Datatype vs. Object Datatype
-
Quick Formatting Wins: Upper(), Lower(), and Capitalize()
-
Direct Access: Indexing String Series With []
-
Cleaning Up: Stripping Whitespace With strip()
-
Breaking It Down: Splitting Text Values With split()
-
Making Changes: Replacing Portions of Strings With replace()
-
Smart Filtering: Testing Strings With contains()
Apply, Map & Applymap
-
Function Power: Applying Functions to Series
-
Adding Flexibility: apply() With Lambdas & Arguments
-
Column-Wise Magic: apply() With DataFrames (Columns)
-
Row-Wise Operations: apply() With DataFrames (Rows)
-
Streamlined Mapping: The Series map() Method
-
Fine-Grained Control: The applymap() Method
Combining Series & DataFrames
-
Series Connections: Concatenating Series
-
Aligning Data: Concatenating Series by Index
-
Merging Logic: Inner vs. Outer Joins
-
Expanding Data: Concatenating DataFrames by Columns
-
Unifying Rows: Concatenating DataFrames by Index
-
The Workhorse: The DataFrame merge() Method
-
Precision Merging: Left, Right, Inner & Outer Joins with merge()
-
Avoiding Collisions: Using on and suffixes Arguments
Seaborn
-
Getting Started: Intro to Seaborn
-
Instant Data Access: The Helpful load_dataset() Method
-
Exploring Relationships: Seaborn Scatterplots
-
Tracking Trends: Seaborn Lineplots
-
The Versatile relplot() Method
-
Custom Sizing: Resizing Seaborn Plots (Aspect & Height)
-
Exploring Distributions: Seaborn Histograms
-
Smooth Insights: KDE (Kernel Density Estimation) Plots
-
Two-Dimensional Views: Bivariate Distribution Plots
-
Adding Detail: Rugplots
-
The All-in-One Tool: The Amazing displot() Method
Seaborn Categorical Plots
-
Quick Counts: Countplot
-
Data Points in Focus: Strip & Swarm Plots
-
Classic Comparison: Boxplots
-
Advanced Insights: Boxenplots
-
Smooth Distributions: Violinplots
-
Mean & More: Barplots
-
One Function to Rule Them All: The Big Boy catplot() Method
Mastering Seaborn Aesthetics
-
Set the Mood: Changing Seaborn Themes
-
Fine-Tuning Looks: Customizing Styles with set_style()
-
Declutter with Precision: Altering Spines Using despine()
-
Color That Connects: Changing Color Palettes
Student Ratings & Reviews
No Review Yet
